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ON STABILITY OF STEADY MOTIONS OF A HEAVY SOLID BODY 
ON AN ABSOLUTELY SMOOTH HORIZONTAL PLANE* 

A.V. KARAPETLAN 

Stability of steady motions of a heavy solid on an absolutely smoothhorizontalplane 
is investigated. Conditions of existence and stability of permanent rotations are 
obtained in the case of arbitrary distribution of mass and arbitrary surface of the 
body, and those of existence and stability of regular precessions of a dynamically 
symmetric body bounded by a surface of revolution. A definite analogy of the 
problem investigated here to that of stability of permanent rotations and regular 
precessions, respectively, of an arbitrary and a dynamically symmetric body with a 
fixed point, as well as the essential differences between them, are pointed out. 

1. Consider a heavy solid body bounded by a smooth convex surface supported by an absolut- 
ely smooth horizontal plane. Position of the body is defined by the coordinates x and y of 
its center of mass in a fixed system of coordinates UX~.Z, with the plane 0x1~ coincident with 
the horizontal supporting plane and the axis Oz directed vertically upward,and by the Euler 
angles 8, cp, 4, between the principal central axes GE, Gq, Gg of the body ellipsoidofinertia 
and the axes of the fixed coordinate system. The Lagrange function of such system is then of 
the form L = liz [A c0s2 cp + R sin2 tp + ~(X~COS 0 - c sin eyle’a -+- 

Vl(C + mxaa sin2 0) cpea + 1/2 [(A sin2 tp + B cos2 tp)sin2@ .-I- 
C COS~~]+'~ + m(xl cos 0 - 5 sin t?) xz sin 6 B'v' + 

where mis the mass of the body, A, B, C are its principal central moments of inertia, and 
f,r, 5 are the coordinates of the point of contact of the body with the plane in the system of 
coordinates GErl5. It can be shown that 5,~ 5 are functions of vatiables 0 and fpwhich are 
determined by the form of the two equations that define the body surface, and satisfy tW0 re- 
lations of the form 

(E'sin cp + q'cos cp)sin 0 -b 5' cos 0 = 0 (1.1) 

where the prime indicates differentiation with respect to 8 or 9. 
The coordinates 2, y,l) are obviously ignorable, and to them correspondthe first integrals 

of the system a.5 
-Jy = p = const, +=q=const, +Q=eOnSt (1.2) 

This enables us to disregard the ignorable variables and introduce the Routh function 

where Zu(i, j= 1, 2, 3) are axial and (i = j) centrifugal (i=#=j) moments of inertia ofthebody 
about axes of the system of coordinates Gx'y'z' whose origin is at the body centerofmass,with 
the axis Gz' directed vertically upward, axis Gy' running on the line of nodes in the direct- 
ion in which axis Gz' turns counterclockwise by angle 6 up to congruence with axis G<, and 

axis Gs' normal to plane Gy'z', thus constituting a right-hand coordinate system 
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fll = (A sixPrp + 3~0s~~) eos2 9 + C&X*@ 
. x I,, = A co9 cp $- B sm cp 

I,, = (A sina Q, + B co9 cp) sinz 0 + C CO? B 

r,, = (A -B) sin 'p cos tp cos e 
IIS = (.4 sine cp -t B ~03 rp - C) sin e cos e 

Izs = - (A - B) sin cp cos cp sin tl 
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(1.3) 

2. Since x, y, J) are ignorable coordinates , the input system can perform steady motions 

of the form 
8WB@, e'==o, l-f==@l, cp"F, **=*;'5#, x*=x@+, .lj=y, (2.11 

The body is then in contact with the horizontal plane at one and the same of its points, 
while rotating about the vertical line passing through its center of mass, with the latter 
moving at constant velocity along a straight line parallel to the horizontal plane. This means 
that the center of mass may be assumed, without loss of generality, stationary. The point of 
the body contact with the supporting plane describes on the latter a circle whose center isat 
the projection of the center of mass on that plane. 

Constants So,cpO,o in (2.1) are determined by the system of three equations 

aw o aw o ai. 
XT, --g-$-z, T&jr-.- -Q 

w QS E-mg(~1sine-i-~cos6)+21as 

which with allowance for (1.1) and (1.3) assumes the form 
Q%s (E sinqs+ncosrp)cos0--6sine=--- 
meld 

Q%* 
Ecoscp-nsinv=d, 

W&z+ I,.&=Q 

Since constant Q is arbitrary in (1.2) , o can also be chosen arbitrarily, with constants 
i& and cpo determined by the system of two equations of the form 

&-s (Esfncp + qcosq0cose-g&e=-- w? 
Lso* EGosa, -nsincp=- 
W 

(2.2) 

Eliminating from system (2.2) oa we obtain the relation 

(B - C)Ssin ecoscp cos 8 -t-(C - A)q sin6 sin cp cos 0 -i- (A - B)g sin* esincpcoscp = 0 (2.3) 

which in the case of steady motion must be satisfied by 8 and cp or, which is the same, by the 
directional cosines yl=sin e sin 'p,yB =sin e oos(p, yd = case of possible axes of permanent rota- 
tion of a heavy body on an absolutely smooth horizontal plane. Obviously Eq.(2.3) is, apart 
the notation, the same as the respective equation which must be satisfied by the directional 
cosines of possible axes of permanent rotations of a heavy solid with a fixed point /l/. But 
in the latter case E,n, g are the coordinates of the body center of mass in the system of 
principal axes of its ellipsoid of inertia about the fixed point, with A,B,C the corres- 
ponding principal moments of inertia. An essential difference between these two equations 
should be noted. In the case of a body with a fixed point E,n, 5 are constant and Eq.(2.3) 
defines in the space Y~,Y~,Y~ a second-order cone, while in the considered here problem E,q, 
5 are functions of 0 and cp (i.e. functions y~,y~,y~) and Eq.(2.3) generally define an arbit- 
rary surface. 

Among the kinetically possible axes of permanent rotations whose cosines satisfy Eq.(2.3), 
not all but only those of them for which the inequality o* >O follows from (2.2). This im- 
plies the condition 

(A -@sin 8 sin a, cos cp (5 coscp -1 sin cp) < 0 (2.4) 

which apart the notation, is directly opposite to the condition that determines the admissible 
axes in the case of a solid with a fixed point /l/, i.e. with the given notation the axes ad- 
missible in the latter problem are inadmissible in our problem, and vice versa, which is 
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obvious. In the case of permanent rotation of the body on the plane, its centerofmassplays 
the part of fixed center, and the reaction force, equal and opposite to gravitation force, is 
applied to the body at its point of contact with the plane. 

Remark. If the quantities E, 9, 5 are compared with respective coordinates of the 
center of mass of a body with a fixed point taken with the opposite sign, then, apart such 
notation, condition (2.4) coincides with the corresponding condition in the case of a solid 
with a fixed point, and Eq.(2.3) remains unchanged. 

3. Let us now consider the stability of permanent rotations of the input system. Using 
formulas (2.2) we reduce the Routh function to the form 

where u and v are the perturbations of variables B and m, h = h(t3, cy) is the height of the 
body center of mass above the supporting horizontal. plane , rl =rl (e, ‘p) and r, = r, (0, q) are the 
principal radii of curvature of the body surface at the point of contact with that plane, and 
CL = a(e,cp) is the angle between axis Gx' and the principal radius of curvature rl measured 
from axis Gx' toward axis Gy'; the subscript zero indicates that the respective function of 
variables e and rp is determined for f3 = &,,cp=p,, and the dotted line denotes terms of ordsr 
not lower than the third of variables IC', v' and u, v in the Routh function. 

By the Routh theorem unperturbed motion is Liapunov stable with respect to 9, 8'7 91 9.9 9'7 
x'r y', if the following conditions are satisfied: 

d<O(or f(O) (3.2) 

df - e2 > 0 (3.3) 

When inequalities (3.3) are strictly violated, the unperturbed motion is unstable accord- 
ing to the Kelvin-Chetaev theorem,while in the case of its fulfillment and strict violation 
of inequality (3.2) stability depends only on the sign of the expression 

J = jZ - (uf + cd) + 2be - 2 [(se - b2) (df - e2)1':* (3.4) 

If J<O,thecharacteristic equation of linearized equations of perturbed motion of the reduc- 
ed system has a root in the right-hand half-plane , and the unperturbed motion is unstable, if 
however, J >0 that characteristic equation has two pairs of pure imaginary roots. In that 
case the exact determination of the system stability requires further investigation. 

Since eO and 90 depend on aa (see (2.2)), the stability of permanent rotationsofaheavy 
solid on an absolutely smooth horizontal plane depends only on the distribution of mass and 
geometry of the body (*) surface and, also, on its angular velocity, while being independent 
of the direction of rotation (see (3.1)- (3.4)). If &is a eliminated from the stabilitycon- 
dition with the use of (2.21, then for every specific form of the body surface it is possible 
to separate in the manifold (2,3), (2.4) of admissible axes of permanent rotations the domains 
of stable and unstable motions, as was done earlier in /l/ in the case of a solid with a fix- 
ed point. However this is not possible in the case of an arbitrary surface of the body, since 
the explicit form of functions E (e, tp), ri (0, cp), 5 (e, cp) is not known. 

Remarks. lo. If the body rotates about one of the principal axes of its ellipsoid of 
inertia, the obtained here conditions of stability become the respective conditions obtained 
in /2/, if in the latter the rotor moment of momentum is assumed equal zero. 

*) Editor's note: in the original "of the field". 
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2O. When 0=0, Eqs.(2.2) determine the equilibrium position of a heavy solid on an 

absolutely smooth horizontal plane, and conditions (3.2) and (3.3) determine their stability. 
In that case (e=O), formulas (2.2) imply that in the equilibrium position the body center of 
mass lies on the vertical line which passes through the point of contact of the body and the 
support plane, and conditions (3.2) and (3.3) show that the equilibrium is stable (with res- 
pect to 0, 0.7 cp, cp'>$,', Z', Y’L if the body center of mass is below both principal centers oftbe 
body surface curvature at the point of its contact with the support plane, and unstable in the 
opposite case. 

4. Example. Consider a heavy inhomogeneous sphere on an absolutely smooth horizontal 
plane. Let p be the sphere radius and a --h,-CL, -v the coordinate of its geometric center in 
the system of coordinates @null;. Then 

E = -h- PY!, q= -p - py*, 6= --y - pys 

and Eq.(2.3) and condition (2.4) assume, respectively, the forms 

(4.1) 

(B - C) %'s+ (C-A) PY,YS + (A - B)wY, = 0 (4.2) 

(A - ~)Y& (k - PY,) >O (4.3) 

which are exactly the same as the respective expressions in the case of the solid withafixed 
point whose center of mass is defined by the coordinates k,p,v relative to the principal 
axes of its ellipsoid of inertia about the fixed point. Equation (4.2) defines in that case 
also a second order cone. Thus within the indicated meaning of constants R,p,,v themanifolds 
of admissible axes of permanent rotations are the same in our problem and in that of motions 
of a solid with a fixed point. 

Calculating the coefficients of the quadratic part of the Routh function for both cases 
and comparing them to each other, we obtain al = ag Jr bB = (1, b, = br - 6e = b, Ci = cI + ea = e, iI = jn = j 

where a, b, c, 1 without subscripts are of form (3.1) t subscripts1 and 2 denote quantities in 
the investigated here problem and in that of the solid with a fixed point, respectively; in 
the first case k = k(0, cpf is the a coordinate of the sphere geometric center, taken with the 
opposite sign, in the system of coordinates Gz'u'e', and in the second it is the z coordinate 
of the body center of mass in the coordinate system with origin at the fixed point and similar 
to system CZ'Y'Z'. 

This shows that, apart the indicated notation, the domain in.which the sufficient condi- 
tions of stability of the heavy inhomogeneous sphere permanent rotations on an absolutely 
smooth horizontal plane, as determined by the Routh theorem, is the same as the respective 
domain in which sufficient conditions of stability of rotations of a heavy solid with a fixed 
point. A similar statement also holds for the domain where the sufficient conditions of in- 
stability determined by the Kelvin- Chetaev theorem are satisfied. As regards the domain of 
fulfillment of the necessary conditions of stability defined by the positive sign of J in 
(3.4) in the problem considered here, it is narrower than the respective domain in the caseof 
the solid-with a fixed point, since 

J~ - 3* = -+,a* + ze,a& -i- d2.9) + 2 (ddS - e2z)"rf(azea - bsa)'" - 
(a,~, - ba$ i_ c.# + 2b& f &)“*f < 0 BE, 8. ea + 8= # 0 

Note that when A +B#C+A, we have ~=a= 0 only if the rotation is about one of the 
principal axes of the ellipsoid of inertia of the body; all stability conditions are then the 
same in both problems (apart the indicated notation). 

5. Consider now the case of a dynamically symmetric solid bounded by a surface of revol- 
ution. Taking the body axis of symmetry as the G{, axis, 
function of the form 

we obtain for the systemaLagrange 
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L = I/, [A + m(xI cos 6 - 5 sin8)21 V2 ./- I:'% A sin2 @I$'? -f 
Vz C (cp' + $,' co5 tl)% _i- V,rn (z’~ + y’“) _t mg (xl sin 0 + t cos 0) 

It can be shown that in such case ~1 and 5 are functions of only variable 0, which sat- 
isfy the relation 

XQ sin 0 -i ccos I3 :-- 0 i5.1.) 

where the prime denotes differentiation with respect to 0. and xz = 0. 
Obviously 2, y,cp,$ are ignorable coordinates to which correspond the first integralsof 

the system 
8L 
m = p = cmst, +=cnnst, g.=P=const, +(i=Wl,t (5.2) 

which enable us to disregard the ignorable variables and introduce the Routh function 

R = I/% [A + m (x1 cos 0 - 1; sin Qa] P + mg (xl sin 0 _i- 5 cos 0) --Y& - &- (pa + q2) - + ‘Q dS&Tl ‘)‘- 

Moreover the input system can perform steady motions of the form 

e=e,, W-0, (P'=rpo'sQa, *'=$;-zw, X'ZQO', y'zyo (5.3) 

The body then rotates about its axis of symmetry at constant angular velocity &and about 
the vertical line passing through its center of mass at constant velocity o, and the center 
itself moves at constant velocity along a straight line parallel to the horizontal plane. As 
previously, we assume, without loss of generality, the center of mass to be stationary in 
steady motion. Then the point of contact of the body with the supportplanedescribesinsteady 
motion two circles: one on the body surface in a plane normal to its axis of symmetry and 
another on the support plane. The center of the first circle liesonthebodyaxisofsymmetry 
at a point at coordinate c(@& and the center of the other lies at the projection of the 
center of mass on the support plane. 

The constants 8,,Q,o in (5.3) are determined using the system of three equations 

which with allowance for relations (5.1) assumes the form 

- mg (xl cos 9 - 5 sin 8) -I- 
(Q-PcosO)(P-Qcoafl) =. 

A SiiPB 
C (GI -I- w cos 0) = P, A sin2 6 0 + C (a +- 0 cos 0) cos I3 - Q 

(5.4) 

Since constants P and Q in (5.2) are arbitrary, hence o and &? can also be arbitrarily 
chosen, with the constant 8, determined by the equation 

-mg(~rcos8-~sin~)~~CQ+(C-~)ocos6~o~i~~~=0 (5.51 

The first equation of system (5.4) or Eq.(5.5) (obtained in /2/ in a somewhat different 
form) can be considered as the condition of existence of regular precession of a dynamically 
symmetric heavy solid bounded by a surface of revolution and supported by an absolutely smooth 
horizontal plane. In the case of the solid with a fixed point the corresponding condition of 
existence of regular precession (see, e.g., /3/) is obtained using (5.4) or (5.5) with x1=0, 

g =-Y, where Y is the coordinate of the body center of mass on the axis of symmetry of its 

ellipsoid of inertia constructed for the fixed point. 

6. In the considered here case (a single position coordinate in the system) the unpertur- 
bed motion is, obviously, stable when (PW/c@),,>O and unstable, if the last inequality is 
strictly violated, which with (5.4) taken into account assumes the form 

mg (r - Qt, -I- d-l sin-* 6, ((P - Q GOS e,Y - 2 (P - Q cos$) x(Q-PGL)S~~}COS~~i_(Q-PGoSe~)~I~O (6.11 

where r = r(O) is the radius of curvature of the meridian cross section of the body surface 

through the point of its contact with the support plane, l= Z(8) is the distance from that 
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point to the point of intersection of the body axis of symmetry with the verticallinepassing 
through the first point. 

Note that the second term in condition (6.1) is always positive (e# 0, n) andis exactly 
equal to the second derivative of the altered potential energyinthe case of a solid with a 
fixed point (see, e.g., /3/), whose regular precession is always stable. Howeverinthiscase 
it is not so. when r. > 10, the regular precession of a solid on and absolutely smooth hori- 
zontal plane is also stable at any angular precession and spin velocities; but when ro < l,, 
then as implied by (6.1) with allowance for (5.41, the inequality 

ICQ + (C - 2A) cocos B,, 1% + Aawa sin%, > --Amg (rO - lo) (6.2) 

which imposes on oand 0 constraints from below, must be satisfied. 
Note that condition (6.2) is somewhat wider than the condition of stability of quasi- 

regular precession of a symmetric gyrostat on a horizontal plane, obtained in /2/ withtheuse 
of Liapunov's function; it is not only sufficient but, also, necessary. 

Example. The regular precession of a dynamically symmetric heavy inhomogeneous sphere 
on an absolutely smooth horizontal plane is always stable, since then r= I= p, where p is 
the sphere radius. 

The author thanks V.V. Rumiantsev for useful advice and discussion. 
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